
A Robust Damage-Reporting Strategy for Polymeric Materials
Enabled by Aggregation-Induced Emission
Maxwell J. Robb,†,‡,§ Wenle Li,†,§,∥ Ryan C. R. Gergely,†,⊥ Christopher C. Matthews,†,⊥ Scott R. White,†,#

Nancy R. Sottos,*,†,∥ and Jeffrey S. Moore*,†,‡

†The Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, ∥Department of Materials Science and
Engineering, ⊥Department of Mechanical Science and Engineering, and #Department of Aerospace Engineering, University of Illinois
at UrbanaChampaign, Urbana, Illinois 61801, United States

*S Supporting Information

ABSTRACT: Microscopic damage inevitably leads to failure
in polymers and composite materials, but it is difficult to detect
without the aid of specialized equipment. The ability to
enhance the detection of small-scale damage prior to
catastrophic material failure is important for improving the
safety and reliability of critical engineering components, while
simultaneously reducing life cycle costs associated with regular
maintenance and inspection. Here, we demonstrate a simple,
robust, and sensitive fluorescence-based approach for auton-
omous detection of damage in polymeric materials and
composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active
component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical
and mechanical properties.

Small (micrometer) scale damage in polymeric materials is
often difficult to detect, yet it compromises mechanical

integrity and inevitably leads to failure. Strategies that enhance
detection of damage are therefore important for improving
safety and increasing reliability, while also reducing life cycle
costs associated with regular maintenance and inspection.1,2

Moreover, systems that respond autonomously to self-report
damage are appealing because no human intervention is
required.
The development of self-reporting materials enables

autonomous damage detection for improved safety and
reliability of critical engineering components. For example,
incorporation of mechanically sensitive molecules in polymeric
materials through covalent3−5 or noncovalent6,7 modification
facilitates color changes in response to macroscopic deforma-
tion. Alternatively, microencapsulation offers a robust and
versatile platform where mechanical rupture triggers the release
of a payload.8,9 Enhanced damage visibility in polymer
composites has been achieved using a fluorescent dye contained
within embedded hollow fibers;10 however, this method suffers
from the absence of a “turn-on” mechanism, precluding its
utility in transparent materials. Visualization of damage has also
been accomplished using microcapsules containing a con-
jugated monomer in combination with an embedded polymer-
ization catalyst11 as well as pH-sensitive dyes that change color
upon reaction with an auxiliary compound12,13 or with certain
functional groups present in the polymer matrix.14 Chemical
activation of an embedded fluorogenic molecule15 and
formation of a charge-transfer complex using a dual capsule

system has also been described.16 Nevertheless, current damage
detection methods generally rely on chemical reactions to elicit
a response and are highly material-dependent or complicated
by multiple components.
Here, we demonstrate a simple, robust, and sensitive

fluorescence-based approach that employs a physical change
of state to autonomously indicate damage in polymeric
materials and composites by aggregation-induced emission
(AIE). With this detection scheme, mechanical damage triggers
rapid generation of a local fluorescence signal that is easily
visualized under UV light and provides excellent contrast
between intact and damaged regions of a material. The general
indication mechanism enables the unaided detection of damage
less than 2 μm in size in a wide variety of materials prepared
using diverse fabrication methods.
Fluorescence detection provides significantly enhanced

sensitivity over absorption-based colorimetric methods; how-
ever, typical fluorophores exhibit diminished emission with
increasing concentration,17 which restricts their use in materials
applications. In contrast, AIE luminogens are molecules that
possess vibrational and/or rotational modes capable of relaxing
the energy of absorbed photons nonradiatively when dissolved
in solution.18,19 Aggregation restricts this intramolecular
motion and promotes efficient photoluminescence.20 This
unique feature enables the use of AIE luminogens in areas
such as solid state optoelectronic devices21,22 and rewritable
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media for optical data storage.23,24 Building on these
innovations, we envisioned a turn-on detection system in
which core−shell microcapsules release a solution of an AIE
luminogen upon mechanical damage resulting in local
fluorescence indication after solvent evaporation.
The damage detection system is illustrated schematically in

Figure 1. Core−shell microcapsules containing a dilute,
nonfluorescent solution of AIE luminogen are embedded in a
polymeric material. Following mechanical damage, rupture of
the microcapsules results in the release of the encapsulated
solution in the region of damage. Subsequent spontaneous
evaporation of the solvent causes aggregation of the AIE
luminogen and generation of fluorescence that is visualized
under an appropriate excitation light source. This approach
provides a number of advantages for damage detection. For
example, this simple, one-component design does not rely on
intermolecular interactions and is anticipated to perform
similarly in a variety of materials. Furthermore, advancements
in encapsulation chemistry, the ready availability of diverse AIE
luminogens, and the facile incorporation of microcapsules into
existing materials formulations make this technology highly
accessible.
To demonstrate this concept, we investigated the commer-

cially available AIE luminogen 1,1,2,2-tetraphenylethylene
(TPE).25,26 Hexyl acetate was chosen as a solvent due to its
suitability for microcapsule preparation,27 moderate boiling
point (∼170 °C), and contemporary use in industrial paint
formulations.28 When TPE is dissolved in hexyl acetate, the
solution is colorless and exhibits an absorption maximum at
310 nm (Figure 2a). As expected, the solution is nonemissive
under illumination with UV light, but a brilliant blue
fluorescence with an emission maximum at 450 nm is observed
from the solid residue formed upon solvent evaporation (Figure
2b). The fluorescence excitation spectrum of solid TPE reveals
relatively uniform emission intensity at excitation wavelengths
between 300 and 370 nm, varying less than 10% over this range

(Figure S1). This expedient feature facilitates the use of
ordinary UV light sources for visualization of the damage-
induced fluorescence signal.
Core−shell microcapsules containing a 1 wt % (8.7 mg mL−1,

26 mM) solution of TPE in hexyl acetate were prepared using a
well-established in situ emulsification condensation polymer-
ization method.29 The TPE microcapsules studied were 112 ±
10 μm in diameter and exhibited excellent thermal stability up
to 220 °C as demonstrated by thermogravimetric analysis
(Figure S2). SEM images of the microcapsules show that the
majority were spherical in shape and remained intact after
processing (Figure S3). The thickness of the shell walls was
approximately 300 nm based on analysis of SEM images of
ruptured microcapsules. The TPE microcapsules are colorless
due to the core material being completely transparent to all
visible wavelengths of light, which is desirable for applications
where the overall appearance of a material is potentially affected
by the inclusion of additives. The fluorescence properties of
TPE in solution were also maintained in the microcapsules,
which were nonfluorescent under illumination with UV light,
suggesting minimal background signal from the intact micro-
capsules when embedded in polymeric materials. The micro-
capsules remained nonemissive upon storage in ambient
conditions for more than six months, which indicates the
high stability of the TPE solutions contained in their core.
The potential for TPE microcapsules to enable visual

indication of mechanical damage was first evaluated by optical
microscopy of both intact and ruptured microcapsules under
illumination with white light and UV light (Figure 2c). TPE
microcapsules were spread on a glass substrate, and a portion of
them was damaged using a razor blade. Under illumination with
white light, regions where intact and ruptured microcapsules
coexisted were clearly observed, facilitating investigation of the
fluorescence properties of intact versus ruptured microcapsules
at the single microcapsule level. Under illumination with UV
light, microcapsules that were damaged (as observed under

Figure 1. Schematic of the autonomous damage detection system. Core−shell microcapsules containing a dilute solution of AIE luminogen are
embedded in a polymeric material. Mechanical damage causes microcapsules to rupture and release their liquid payload. Subsequent evaporation of
the solvent causes solid AIE luminogen to deposit in the damaged region, which fluoresces under UV light. The core solutions contained within
intact microcapsules remain nonemissive, providing excellent contrast between damaged and undamaged regions of the material.
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white light) exhibited distinct blue fluorescence while the intact
microcapsules were undetectable. As a control, microcapsules
containing only hexyl acetate in the core were also prepared
and evaluated similarly. As expected, no fluorescence was
detected from intact or ruptured control microcapsules,
demonstrating that the TPE luminogen was responsible for
the observed fluorescence response (Figure S4). Additionally,
SEM images of ruptured TPE microcapsules revealed
crystalline deposits on the surface of the capsule shell which
were absent in images of the ruptured control microcapsules
(Figure 2d).
Transparent epoxy coatings incorporating 10 wt % TPE

microcapsules were prepared to investigate autonomous
damage indication capabilities for self-reporting engineering
thermoset materials. Cured films were scratched with a razor
blade and evaluated under white light and UV light sources
(Figure 3a). Photographs of the scratched coating highlight the
significant enhancement in visual identification of the damaged
area under exposure to UV light, while higher magnification
stereomicrographs demonstrate localization of the fluorescence
response to individually ruptured microcapsules. Critically,
areas outside of the damaged region remained completely
nonemissive, providing excellent contrast between the damaged
and intact regions of the coating. Moreover, the fluorescence
signal developed rapidly after mechanical damage and was
detectable almost immediately under UV light. Time-depend-
ent fluorescence microscopy measurements demonstrated that
maximum fluorescence intensity was reached after approx-
imately 5 min in ambient conditions (Figure 3b). Analogous
coatings prepared with control microcapsules were evaluated in
an identical fashion with no changes in fluorescence observed
after damage (Figure S5).
Epoxy coatings containing TPE microcapsules also demon-

strated persistent damage indication capabilities. Scratched
coatings stored for over one month in ambient conditions

displayed equivalent fluorescence indication properties com-
pared to freshly prepared and scratched coatings. Likewise,
identical fluorescence behavior was observed for new scratches
produced in aged coatings (Figure S6). Damage indication was
also uncompromised using microcapsules with a lower
concentration of TPE in the core and lower microcapsule
loadings; however, higher TPE concentration and incorpo-
ration of more microcapsules in coatings produced a more
intense fluorescence response, as expected (Figure S7).
Further studies were carried out to probe the relationship

between fluorescence response and damage scale. SEM images
of scratched epoxy coatings containing TPE microcapsules
show solid deposits of TPE in sheared regions adjacent to the
primary scratch damage (Figure 3c). Close inspection revealed
evidence of ruptured microcapsules at the surface of the
sheared region (Figure S8). The high number of exposed,
ruptured microcapsules in this region likely results in
accelerated solvent evaporation and accounts for the intense
and relatively diffuse fluorescence around the primary damage
site. Furthermore, we reasoned that this feature would manifest
in a fluorescence signal that is closely correlated with damage
size. A series of scratches with varying depths (ca. 94−376 μm)
were created in a similar epoxy specimen, and the indication
response was characterized using fluorescence microscopy
(Figure 3d). The area of the fluorescent region and the average
intensity increased proportionately with cutting depth. Analysis
of the surface topology of the specimen using profilometry
confirmed that the area of the fluorescence signal was strongly
correlated with the physically damaged area which included
significant shearing adjacent to the primary scratch (Figure 3e);
however, profilometry was unable to fully resolve these damage
features. The relationship between mechanical damage and
fluorescence response was further confirmed by characterizing
the internal structure of the specimen using X-ray computed
microtomography (micro-CT), which was able to differentiate

Figure 2. Characterization of TPE fluorescence. (a) UV−vis absorption (6.6 × 10−5 M in hexyl acetate) and solid-state fluorescence emission spectra
of TPE (λex = 365 nm). (b) Photographs of a TPE solution under illumination with UV light demonstrating the development of fluorescence upon
solvent evaporation. (c) Stereomicrographs of TPE microcapsules under illumination with white light and UV light demonstrating damage-induced
fluorescence. Intact microcapsules are undetectable under UV light, while ruptured microcapsules are fluorescent. The locations of intact
microcapsules are outlined as a guide (red dashed circles). (d) SEM images of a ruptured TPE microcapsule showing formation of TPE crystals on
the shell wall.
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between intact and ruptured microcapsules within the material
and identify their location relative to matrix damage (Figure
3f).
To demonstrate the versatility of this method, we also

investigated damage detection performance in a variety of
different materials and different damage modes. Polyurethane
coatings incorporating 10 wt % TPE microcapsules were
prepared and examined under white light and UV light after
being scratched with a razor blade (Figure 4a). Under ambient
white lighting, the damage to the coating was nearly
undetectable; however, under illumination with a hand-held
365 nm UV lamp, the scratch was clearly visible, exhibiting a
bright blue fluorescence signal. Similar to the epoxy coatings,
intense fluorescence from the region of damage was detected
rapidly after the coating was scratched. SEM analysis revealed
that the scratch was <2 μm wide, which is beyond the putative
limit of unaided visual detection. Similar damage to coatings
containing control microcapsules was undetectable (Figure S9).
Scratch damage was also clearly indicated in a variety of other
polymeric coatings prepared using diverse fabrication techni-
ques (Figure 4b). TPE microcapsules provided excellent
detection performance in polydimethylsiloxane, UV-cured
epoxy, poly(acrylic acid) cast from water, and polystyrene
cast from toluene. The effectiveness of damage indication in
these materials also highlights advantages of this approach over

color changing strategies, which are typically limited to polymer
matrices with minimal coloration to provide sufficient contrast.
Additionally, performance is maintained in materials utilizing
diverse chemistries and curing conditions including prolonged
exposure to intense UV irradiation. Finally, the ability to
enhance damage visibility in carbon fiber reinforced composites
was investigated, where barely visible impact damage is
accompanied by severe deterioration in structural integrity.30

Composite specimens with an epoxy coating incorporating 10
wt % TPE microcapsules were subjected to a variety of impact
tests, and the resulting damage, including microcracks, was
clearly discernible under UV light (Figure 4c and Figure S10).
These experiments further illustrate the versatility of this
technology and highlight the unique efficacy of this self-
reporting system for enhancing the visual identification of
damage in different materials systems.
Self-reporting materials with autonomous damage indication

are achieved using core−shell microcapsules containing a dilute
solution of an AIE luminogen. This system constitutes a simple
and robust method that enables the visual detection of
microscopic damage in a wide range of polymeric materials
under illumination with an appropriate excitation light source.
Using microcapsules containing a solution of TPE in hexyl
acetate, the fluorescence signal develops rapidly following
mechanical damage to polymeric coatings and reaches

Figure 3. Evaluation of damage detection performance in transparent epoxy coatings. (a) Photographs of an epoxy coating containing 10 wt % TPE
microcapsules under illumination with white light and UV light after being scratched with a razor blade. Insets show stereomicrographs of the coating
under similar illumination. (b) Time-dependent fluorescence microscopy measurements illustrating rapid development of a fluorescence signal after
damage. A control coating incorporating microcapsules with only hexyl acetate in the core exhibits negligible change in fluorescence after damage.
(c) SEM images illustrating solid TPE deposits in the shear region adjacent to the primary scratch damage. (d−f) Characterization of an epoxy
coating containing 10 wt % TPE microcapsules with damage of varying size (average scratch depths from left to right: 94, 140, 171, 222, and 376
μm): fluorescence micrograph and overlaid fluorescence intensity profile (d), surface topology from profilometry (e), and magnified view of a 3D
micro-CT reconstruction (f). Profilometry does not sufficiently resolve the scratch from the adjacent sheared region. In panel f, intact microcapsules
are rendered as black; ruptured microcapsules and damaged areas of the surface are white; the epoxy polymer matrix is shaded gray.
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maximum intensity in minutes. In contrast to alternative
methods, this detection system is general, does not rely on any
external or intermolecular interactions to elicit a response, and
provides outstanding contrast between intact and damaged
regions with excellent sensitivity. We anticipate that the
effectiveness of this technology coupled with its facile
implementation will make it a useful tool for a variety of
applications extending beyond damage detection.
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